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Abstract

Nowadays, bioinformatics offers advanced tools and procedures of data mining aimed at finding consistent patterns or systematic relationships
between variables. Numerous metabolites concentrations can readily be determined in a given biological system by high-throughput analytical
methods. However, such row analytical data comprise noninformative components due to many disturbances normally occurring in analysis of
biological samples. To eliminate those unwanted original analytical data components advanced chemometric data preprocessing methods might
be of help. Here, such methods are applied to electrophoretic nucleoside profiles in urine samples of cancer patients and healthy volunteers.
The electrophoretic nucleoside profiles were obtained under following conditions: 100 mM borate, 72.5 mM phosphate, 160 mM SDS, pH 6.7;
25kV voltage, 30 °C temperature; untreated fused silica capillary 70 cm effective length, 50 wm L.D. Different most advanced preprocessing tools
were applied for baseline correction, denoising and alignment of electrophoretic data. That approach was compared to standard procedure of
electrophoretic peak integration. The best results of preprocessing were obtained after application of the so-called correlation optimized warping
(COW) to align the data. The principal component analysis (PCA) of preprocessed data provides a clearly better consistency of the nucleoside
electrophoretic profiles with health status of subjects than PCA of peak areas of original data (without preprocessing).
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction analysis as well as extraction and ultimate application of system-

atic information they convey [3]. It has been estimated that the

Bioinformatics is the application of computer sciences and
mathematics to the management and analysis of biological
datasets to aid the solution of biological problems [1,2]. Nowa-
days, in the post-genomic era, large databases containing
metabonomic, proteomic and transcriptomic data are created
and attention should be focused to their storage, management,
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amount of information in the world doubles every 20 months and
the size and number of “omics” databases are increasing even
faster. Therefore, appropriate characterization and classification
of data processing tools as well as creation of new computational
procedures (algorithms) is unavoidable [3].

According to the definition of the Metabolomics Soci-
ety (http://www.metabolomicssociety.org), metabolomics is the
study of metabolic changes that encompasses metabolite tar-
get analysis, metabolite profiling, metabolic fingerprinting,
metabolic profiling and metabonomics. Metabonomics can be
understood as comprehensive analysis of endogenous metabo-
lites changes in biological fluids and tissues that result from
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disease or therapeutic treatment. Since metabolites are the final
products of cellular regulatory processes, their quantitative lev-
els can be regarded as the ultimate response of biological systems
to genetic and environmental changes [4]. Data obtained from
metabolome analysis can be used for various aims, like simu-
lation of the biological activity with genes coded in genome,
production of valuable metabolites by gene technology [5] and
diagnosis of various pathological states [6-9]. A specific fea-
ture of metabolomics is its reductive nature. Currently it focuses
on ca. 2400 compounds, compared to 25,000 genes and about
one million proteins and peptides to be considered in genomic
and proteomic studies, respectively [10,11]. Of course, partic-
ular metabolite is usually involved in several pathways. It can
be rationally assumed that metabolite profile patterns might be
characteristic for specific diseases, however. Nowadays, one can
imagine determination of all the metabolites by high-throughput
automatized and roboticized analytical techniques, followed by
a fast and reliable pattern recognition by generic model fitting
or classification algorithms. That should result in predictive data
mining. However, such a diagnostics “philosopher stone” would
be impractical, if at all possible. Instead, considering of limited
sets of metabolites appears advisable in a more or less specific
disease diagnostics.

The approach needs not to rely on any reasoning or under-
standing the mechanisms of the processes. However, it must be
shown to provide correct predictions or classification in cross-
validation samples. For that aim proper preprocessing of analyt-
ical data seems to be of utmost importance to provide eventually
consistent patterns or systemic relationships between variables
and then to validate the conclusions by applying the identified
patterns to new subsets of data.

In case of heterogeneous diseases, like cancer, a panel of
biomarkers (metabolites) determined through the use of multiple
high throughput platforms, might provide reliable information
on health status of the patients, which is normally not provided
by a single variable (biomarker) [6,9].

To be useful, biomarkers not only must distinguish between
subjects with a given diseases and those without it, but also
their assay methods should be validated and readily employed.
Researches from different laboratories should use the same
experimental protocol and compare their profiles against those
of others in universal database.

The optimal practice in analysis of biological samples should
include selection of appropriate analytical methods and collec-
tion of analytical data, followed by application of multivariate
data processing models, such as principal component analysis
(PCA), partial least squares (PLS) or parallel factor analysis
(PARAFAC) for explanatory purposes. All these steps should
be robust and fast enough to deal with many disturbances nor-
mally occurring in analysis of various biological samples. That
is essential in metabonomic studies, where database may com-
prise hundreds or thousands of variables. Usually, variations
observed in metabonomic measurements are due to complex-
ity and diversity of analyzed biofluid samples (matrix effects:
sample-to-sample), mechanical drift (fluctuations: run-to-run)
as well as imperfections of analytical methods in the long-term
and large-scale analysis projects.

Capillary electrophoresis (CE) is one of the most important
analytical methods in modern life sciences laboratories [12—15].
It is employed widely in search for cancer biomarkers [16,17].
Advantages of CE, that make it particularly valuable in metabo-
nomic studies are: high resolution power, relatively short time
of analysis and small quantities of both the sample and the back-
ground solutions needed for assay. However, CE in comparison
to high performance liquid chromatography (HPLC) or gas chro-
matography (GC), produces less reproducible results, what may
pose a problem in long lasting projects. Variations in migra-
tion time — a function of electroosmotic flow (EOF) inside the
capillary, sample loading, wall interactions and physical errors
(such as injection irreproducibility or temperature variations) —
may lead to poorly reproducible data and preclude their appro-
priate interpretation [14,15]. To overcome this problem specific
chemometric approaches may be of value for migration time
adjustments and peak alignment. After a proper chemometric
transformation, the data originating from various sources could
be compared and relevant information might be extracted and
further investigated by specific advanced explanatory/inductive
cheminformatics.

In this study, different chemometric methods were compared
in preprocessing of CE data obtained in metabonomic studies.
The data were from CE analysis of nucleoside profiles — poten-
tial biomarkers of cancer [18-20] —in urine samples from cancer
patients and healthy controls. The applicability of different pre-
treatment tools, as well as impact of preprocessing on evaluation
of internal relationships of the data, was investigated. Various
baseline correction, denoising and peak matching algorithms
have been used. PCA of an original dataset and a derivative
dataset, obtained after implementation of individual pretreat-
ment methods, evidences the advantage of the proposed prepro-
cessing of electrophoretic data for conclusiveness of metabo-
nomic studies. The study has a pilot methodological character as
it has been done on a relatively small group of 28 subjects. How-
ever, preliminary results indicate evident trends in clustering of
cancer patients separately from healthy volunteers thus encour-
aging extension of both the number of subjects and the metabo-
lites assayed. Chemometric preprocessing of the employed
analytical data to reduce noninformative components appears
advisable.

2. Materials and methods
2.1. Analytical procedures

Spontaneous urine samples from healthy adults and cancer
patients from the Department of Urology, Medical University of
Gdansk, Gdansk, Poland were collected after their informed con-
sents and the studies were performed in accordance to the prin-
ciples embodied in the Declaration of Helsinki. Cancer patients
included in the study were after diagnosed kidney, prostate
and bladder cancer. After collection, urine samples were frozen
immediately and stored at —24 °C. Directly before the analysis
of nucleoside profiles and creatinine concentration the samples
were thawed at room temperature.
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Urinary nucleosides were analyzed with application of the
following stages: sample pretreatment, solid phase extraction
(SPE) and capillary electrophoretic (CE) separation and quan-
tification. Additionally, during a separate electrophoretic exper-
iment [21] the concentration of creatinine for every sample was
determined. Analytical methods were previously developed and
validated in the Department of Biopharmaceutics and Pharma-
codynamics, Medical University of Gdansk, Gdarsk, Poland.!

CE experiments were carried out on a Beckman Coulter
MDQ P/ACE 5510 system (Beckman Instruments, Fullerton,
CA, USA), fitted with a diode array UV-absorbance detec-
tion (190-600 nm), a temperature-controlled capillary compart-
ment (liquid cooled) and a temperature controlled autosam-
pler (air cooled). Electrophoretic data were acquired (acqui-
sition rate of signals was 4Hz) and analyzed by 32 Karat
Software (Beckman). The electrophoretic dataset was obtained
[21] by application of following conditions: 100 mM borate,
72.5 mM phosphate, 160 mM SDS, pH 6.7; 25 kV voltage, 30 °C
temperature during analysis; injection 5s x 0.5 psi; capillary:
untreated fused silica 70 cm length to detector, 50 pm LD. In
case of creatinine concentration determination exactly the same
electrophoretic conditions were used instead of injection time
10s x 0.5 psi.

2.2. Creation of dataset

The electropherograms were imported from 32 Karat Soft-
ware into Matlab 6.5 software environment for Windows (Math-
works, Natick, MA, USA) as three-dimensional matrix (time,
absorbance, wavelength). The objects of preprocessing — data
points from 2200 to 4000 (240 data points correspond to 1 min
of analysis) — were selected as sections of electropherograms
including most peaks (of known and unknown identity) and
wavelength of 254 nm was chosen as the most representative
(Fig. 1). On that basis, dataset matrix with rows corresponding
to each analyzed sample was created. It contains data from 28
CE analyses of urine samples: 18 from cancer patients and 10
from healthy controls.

2.3. Chemometric analysis of data

Different preprocessing tools were compared. These included
baseline correction, denoising and alignment of data. In the base-
line correction method, the selection of minimum points in data
point window and estimation of new baseline by linear inter-
polation was employed. The proper signal denoising requires
knowledge of the nature of the noise occurring in the data and
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Fig. 1. Six example electrophoretic profiles from the obtained dataset before pre-
processing. Peaks: 1, pseudouridine; 2, uridine; 3, cytidine; 4, 5-methyluridine;
5, inosine; 6, N4-acetylcytidine; 7, guanosine; 8, adenosine; 9, N2 .N2-
dimethylguanosine; 10, xanthosine; (¥), unidentified peaks. The electrophero-
gram was obtained under following conditions: 100 mM borate, 72.5 mM phos-
phate, 160 mM SDS, pH 6.7; 25kV voltage, 30 °C temperature during analysis;
capillary: untreated fused silica 70 cm length to detector, 50 wm I.D.

characteristics of the peaks in the time and frequency domains.
To limit the noise, the efficient digital signal processing algo-
rithms, such as the Savitzky—Golay (SG) implementation of
polynomial least-squares filters, the Cooley—Tukey algorithm
for the fast Fourier transform (FFT), derivative filters or discrete
wavelet transform [22,23] were applied.

At the stage of alignment the research concentrated on the
development of two different methods: dynamic time warping
(DTW) and correlation optimized warping (COW), as these are
the most common techniques used in preprocessing of chro-
matographic data [24-28]. In selection of appropriate alignment
algorithm three principles were considered according to Johnson
et al. [29]:

(1) The algorithm must preserve the chemical selectivity differ-
ences between different profiles and limit run-to-run reten-
tion/migration time shift.

(2) The algorithm must be fast and less memory-demanding to
deal with large number of data sets in a short period of time.

(3) The resulting precision of retention/migration time estima-
tion should be significantly improved in comparison with
that initially provided by the instrumentation.

After selection and application of the best set of prepro-
cessing methods the principal component analysis was per-
formed and the results compared with those of PCA of the
original data (before preprocessing). All the calculations at
the preprocessing of data and chemometric evaluation of the
obtained results were done in Matlab 6.5. Algorithms of the
COW, denoising by Savitzky—Golay implementation of poly-
nomial least-squares filters and the Cooley—Tukey algorithm
for the fast Fourier transform were from the Department of
Analytical Chemistry and Pharmaceutical Technology, Vrije
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University, Brussels, Belgium. Algorithm of baseline correction
was from the Department of Biopharmaceutics and Pharma-
codynamics, Medical University of Gdansk, Gdansk, Poland.
Routines for DTW and discrete wavelet transform were as
freely available at the websites: http://www.models.kvl.dk and
http://www.jstatsoft.org/v06/i06/codes/ThreshWaveb.m.

3. Results and discussion

The main goal of pretreatment of first-order data is to
reduce the time and cost of processing of complex chemical
data, increase data quality and, most important, increase
objectivity of the information extracted from them. The choice
of preprocessing methods is highly dependent on the type of
data. In present research, electrophoretic data were considered.
These data exhibit specific features, such as sharp signals and
discontinuities within a wide range of both time and frequency
domains. That makes them a special object of preprocessing
methods. Many chemometric tools usually applied in process-
ing of chromatographic data do not necessarily work properly
with electrophoretic data. At the current state of the art, the
knowledge on successful application of bioinformatic tools in
preprocessing of electrophoretic data is highly limited.

The experimental dataset, obtained as described in Section 2
underwent the following processes: baseline correction, denois-
ing, selection of target sample, optimization of COW/DTW
parameters, alignment of the whole data set, normalization of
obtained results by known creatinine concentrations and, finally,
PCA analysis.

3.1. Baseline correction and denoising of data

At first step various baseline correction and denoising
algorithms were applied. Baseline correction provides flatter
baselines and averages the baseline to zero. This improves
the accuracy of integrals, the appearance of the signal and the
quality of a result when subtracting one electropherogram from
another. In our case, baseline correction was obtained by simply
finding the minimum points in data points window (in this study
400 data points) for all possible window placements, consider-
ing them as new baseline and linear interpolation of other points
[24].

Table 1

Denoising separates the desired part of signal (correlated with
the properties of analyzed sample) from unwanted part of sig-
nal (noise), what makes the further processing steps, such as
warping, more effective. Three different algorithms, normally
used in processing of chromatographic data, were implemented:
SG smoothing, FFT of Cooley—Tukey algorithm and discrete
wavelet transform [22,23].

The employment of the two first methods was unsuccess-
ful because, besides limitation of noise, also shapes of elec-
trophoretic peaks were changed. This fact could be related to
inaccuracy of sine and cosine basis and low-order polynomial
functions to process electrophoretic data functions used by fast
Fourier transform and Savitzky—Golay smoothing, respectively.

Then, discrete wavelet transform methods, which are recom-
mended for pretreatment of electrophoretic data by Perrin et
al. [23], were implemented. Soft thresholding with sigma value
3 (standard deviation of additive Gaussian White Noise [23])
occurred to be accurate in our case. However, limitation of noise
by the developed method appeared to have negligible impact on
proper quantification of data and presentation of data in PCA
(the percent of explained variance by three first principal com-
ponents and location of points were very similar). Therefore,
denoising step could be omitted in this case.

3.2. Alignment of data

The aim of various alignment (warping) methods is to cor-
rect or eliminate the shift in discrete data signals in such a way
that the output data could be directly used by other appropri-
ate chemometric tools for visualization and data mining. There
are several methods applied in signal aligning which base on
different similarity criterions and disparate ways of creation of
aligned signals [22-34].

DTW and COW, which are used in our studies, are alignment
methods that seem to work for broad ranges of signals [24-26].
COW is a special case of DTW and the main differences between
these two methods are presented in Table 1.

Dynamic time warping nonlinearly warps the two trajectories
in such a way that similar events are aligned and minimum
distance between them is obtained [25,26]. In DTW several
constraints should be specified to avoid excessive corrections,
which could occur in the simplest implementations. Types and

The main differences between dynamic time warping (DTW) and correlation optimized warping (COW) [24,25]

Method Dynamic time warping (DTW)

Correlation optimized warping (COW)

Way of alignment
from one end point to other
Similarity criterion
profile and aligned profile

Reconstruction of profiles

Parameters to define Local continuity constraints;

band-constraints

Sequence of elementary transitions going

Squared Euclidean distance between target

Linear interpolation or averaging

Piecewise linear stretching and compression

Correlation coefficient between
corresponding part in target profile and
aligned profile

Linear interpolation

N,

T Number of points in each segment of aligned sample.
¥ Slack parameter: maximum length increase or decrease in this segment.
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values of selected constraints and synchronization steps prede-
termine the results of warping and its quality. Local continuity
constraints (called “rules”) define the corrective function of the
whole algorithm and are collected in the lookup table (T"*™).
In the lookup table T?™ n is the largest block distance covered
by any of the rules in the table and m is the maximum number
of horizontal/vertical consecutive transitions allowed by the
table [26]. The second type of constraints (band-constraints)
is responsible for maximum compression/expansion in time
points of the sample and reference to their original lengths. In
synchronization step, all the points in optimal path can be used
to obtain the warped signal (symmetric synchronization) or
some points can be aligned with the same point of the reference
signal (asymmetric synchronization).

In comparison to other preprocessing methods, COW is
known as less flexible and more “peak shape preserving” and
easy to employ by simple optimization of the parameters settings
(only two parameters have to be set) [24-26]. In this method also
dynamic programming is used but solution space of optimiza-
tion is restricted to only two parameters: the number of points in
each segment of the aligned sample N and the maximum length
increase or decrease in this segment #-slack parameter. After
tracking back the optimal path and setting all borders of seg-
ments in right positions, the warped/aligned sample segments
are reconstructed by linear interpolation and they are the best-
matching signals for the predefined set of parameters N and .

After selection of denoising and baseline correction tools,
profile #4 (see Table 2) was selected as the target of alignment
as the most representative one (it contains all peaks present in
other samples and its peaks are situated near the center of the
distributions of the corresponding peaks from other profiles).
The main object of alignment, the shift, was characterized in
Table 2. It could be seen that maximal peak shift was about 200
data points for that dataset, with mean value of 48 data points
for one of the last peaks in the aligned section. That strictly cor-

responds to 1.78% relative standard deviation of migration time
and means an acceptable reproducibility in analysis of biologi-
cal samples. However, such a shift is approximately three times
higher than that reported for chromatographic data, which were
processed by various warping techniques [23-34]. Its reduction
may be treated as a chemometric challenge.

The DTW and COW algorithms with various parameters were
implemented and the results are presented in Fig. 2. The best
results of COW were obtained with application of N=160, as
number of sections, and =4, as slack parameter (Fig. 2D). The
length of section was then set equal to 12 points and time for cal-
culation for each electrophoretic profile was approximately 50 s.
The quality of this alignment was high for most of the profiles,
resulting in correlation coefficients above 0.9. Only in few cases,
there was the need to use other sets of parameters (actually, the
variation between the target profile and the profile to be aligned
was higher than 50 data points for four profiles). The division
of profile in 12 points pieces and alignment of every piece by
stretching and compression could cause marked deformation of
data such as deformation of peaks shape and area under peaks.
However, in our dataset, where peaks are narrower than standard
peaks in chromatograms (10-20 data points’ width), no strong
deformation of that type was observed.

In the development of DTW method more attention was paid
to the application of two types of that algorithm: dynamic time
warping with slope constraints and dynamic time warping with
COW-like constraints. Limitation of flexibility of dynamic time
warping was essential because unconstrained DTW produced
artifacts and altered the shape of peaks present in this data.
Dynamic time warping gave comparable results to those of COW
only when rigid constraints were used. Warping with lookup
table T?%% (i.e., with rules spanning also 12 data points and 4
points as maximal number of consecutive horizontal or vertical
transitions in the warping path) was applied with 10% band con-
straints. In the synchronization step, interpolation or averaging

Table 2
Characterization of shift in dataset
Peaks! Target profile Unaligned profiles Aligned profiles
Migration Number of Shift range Mean shift R.S.D. (%) Shift range R.S.D. (%)
time (min) data points (data pointsﬁ (data points) (data points)i
1 10.07 2416 —46 to +83 +15 1.05 —2to+1 0.029
2 10.53 2528 —63 to +41 +19 1.00 —5t0 +6 0.086
3 10.65 2557 —93 to +34 +21 0.57 —3to+1 0.032
4 11.37 2728 —107 to +37 +23 1.12 —3to+2 0.031
5 11.74 2817 —41to+115 +17 1.18 —2to+1 0.02
6 11.92 2861 —119 to +47 +25 1.20 —3to +6 0.028
* 12.28 2948 —130to +50 +27 1.24 —1to+1 0.021
7 12.40 2976 —130 to +50 +28 1.26 —2t0+2 0.024
8 12.85 3083 —141 to +65 +30 1.39 —3to+7 0.069
* 14.86 3767 —191 to +59 +41 1.49 —1to+3 0.023
9 14.95 3590 —92to +198 +35 1.60 —4to +4 0.024
10 15.55 3732 —200 to +76 +48 1.78 —3to+3 0.033

The shift was compared for 12 electrophoretic peaks (10 identified and 2 unidentified) by calculation of variation in number of data points and variation in migration

time according to target profile (profile #4) before and after alignment.

T Peak numbers: 1, pseudouridine; 2, uridine; 3, cytidine; 4, 5-methyluridine; 5, inosine; 6, N4—acetylcytidine; 7, guanosine; 8, adenosine; 9, N2 N2-

dimethylguanosine, 10, xanthosine; (*), unidentified peaks.

! The negative sign (—) refers to a forward shift and a positive sign (+) refers to a backward shift as compared to profile #4 (target profile).
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Fig. 2. Six example electrophoretic profiles after warping with different DTW and COW algorithms. A—C, after DMW warping T?%* with interpolation (A),
averaging (B), defining endpoints (C); D, after COW warping N = 160, r=4. Electrophoretic conditions as in Fig. 1.

was employed (Fig. 2A and B). Additionally, further restrictions
to dynamic time warping constraints, by defining end points of
rules in DTW, were applied and the algorithm analogous to COW
with only difference in optimization criterion was formulated
(Fig. 20).

Consequently to applied DTW parameters, reconstructions
of aligned profiles were different. Averaging in synchronization
step caused disturbances in peak height. That means that when
the sample peak is larger than the matching in target profile,
the former is cut. Conversely, when the sample peak is smaller,
its top element is repeated until two sides of the synchronized
peak match those on reference, resulting in plateau (Fig. 2B). No
such artifacts could be noticed after employment of interpolation
instead of averaging (Fig. 2A and C). The results of the presented
DTW warping are quite similar to those obtained by COW with
small changes in peak height (Fig. 2B) and width (especially
width of the second peak at closer view of aligned data at Fig. 2A
and B). Effects of DTW warping with defined endpoints and
interpolation as synchronization are identical to that obtained
by COW, in spite of different optimization criteria (Euclidean
distance in DTW and correlation coefficient in COW).

Calculation time for all the applied alignment methods was
different. It was, accordingly, 105, 110 and 97 s per one profile
for cases A—C. That is about two times more than time of the cor-
responding correlation optimized warping. On that basis, COW
with N=160 and r=4 was selected for further preprocessing of
dataset.

Now, the obtained derivative of data was normalized by cre-
atinine concentration which has been known for each sample,

because concentrations of all the considered analytes are in lin-
ear relationship with the concentration of urine expressed by the
value of extracted creatinine [18].

3.3. Principial component analysis

Finally, PCA on transformed and normalized by creatinine
concentration nucleoside profiles was performed to reveal the
structure of data and evaluate the differences between two groups
of profiles: healthy controls and cancer patients. Additionally,
PCA analysis of peak areas obtained by standard integration of
17 peaks (14 peaks presented in Fig. 1 and 3 different peaks
present in the part of electropherograms cut before preprocess-
ing) from original electropherograms was performed for the sake
of comparison. The principal components are displayed as a set
of scores, which highlights the clustering and outliers. PCA scat-
terplots (PC1 versus PC2 and PC1 versus PC3) are presented
in Fig. 3. Large values (>80%) of explained variance in the
first three principal components proves the usefulness of PCA
in mining the information contained in electrophoretic profiles.
The division between the groups of healthy and cancer patients
can be clearly noticed on the scatter plots obtained after pre-
processing of electrophoretic data (Fig. 3 A and B) although it
is also seen after standard integration and calculation of peaks
area before the alignment (Fig. 3C and D). PCA analysis of
preprocessed data (Fig. 3 A and B) is evidently more informa-
tive (the percent of explained variance is higher and structure
of data is more clear in that case), even though it is performed
on shorter electrophoretic profiles and comprises not all the data
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Fig. 3. PCA scores scatter plots (((J) cancer patients; () healthy patients). Principal component analysis was performed on preprocessed data (baseline corrected
and aligned) by direct PCA evaluation (PC1 vs. PC2 — Fig. 3A; PC1 vs. PC3 — Fig. 3B) and on original data (before the alignment) by integration, calculation,
autoscaling and PCA of area of 17 peaks (identified and unidentified peaks from Fig. 1A) (PC1 vs. PC2 - Fig. 3C; PC1 vs. PC3 - Fig. 3D).

collected during the capillary electrophoretic analysis. After data
preprocessing (Fig. 3A and B) the data discrimination signifi-
cantly increased and first principal component, PC1, accounted
for 86.6% of data variance, the second principal component,
PC2, for 3.0% of data variance, and the third principal compo-
nent, PC3, for 2.2%. In case of PC analysis performed on original
electrophoretic data before preprocessing (Fig. 3C and D) the
data discrimination expressed by PC1, PC2 and PC3 accounts
for 62.1, 11.6 and 9.2% of data variance, respectively.

That it is an encouraging preliminary finding from the point
of view of explanatory potential of metabonomic studies. It
appears that application of preprocessing tools not only helps
to limit the capillary electrophoretic method disturbances but
also to reveal some information present in electrophoretic
data, uncovered by standard peak integration. This information
might be connected with small peaks and peak’s shapes not
adequately taken into consideration in the procedure involving
peak integration and area calculation. Furthermore, application
of proper chemometric tools seems to help to reduce uncertainty

and subjectivity introduced by peak quantification and makes
possible simultaneous analysis of complex mixtures by such
tools like PCA. Preprocessing of data could be a valuable alter-
native to peak integration in multivariate data analysis applied in
metabonomic studies. It could limit shortages of the developed
methods and influence of the factors connected with analyzed
samples and the equipment used. Thereby, it should help to
validate potential markers by a reliable and fast comparison of
numerous profiles obtained in the large-scale long-term projects.

4. Conclusions

In the study different preprocessing methods were imple-
mented to evaluate electrophoretic data profiles of urinary
nucleosides. The electrophoretic data were collected by analysis
of urine samples from healthy and cancer patients and were
assumed to contain information about physiological state of
the subjects. The aim of the study was to adapt modern data
preprocessing methods before further bioinformatic analysis
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and to compare this strategy with the standard procedure of
peak integration and area calculation.

The best results of preprocessing were achieved after appli-
cation of the COW with the aligned data analyzed by PCA.
The PCA of electrophoretic peak areas of original data (with-
out preprocessing) was also performed to compare the results
with those obtained for the preprocessed data. The structure of
data provided by PCA was different for the preprocessed data
and the original data. Preprocessing not only limited the shift in
data but also revealed information hidden in the nucleoside pro-
files which is probably connected with the shape of peaks and
such structures of profiles that could not be identified when only
areas under peaks were considered. Furthermore, preprocessing
of electropherograms seems to be a more objective and less time
consuming procedure than peak integration.

Selection of suitable preprocessing methods appears to be a
very important step in bioanalytical data evaluation. Certainly,
more experience in application of chemometric tools in metabo-
nomics will help not only to explore the systematic information
dispersed over numerous data but it should also enhance the
reliability of the conclusions drawn and limit the necessary ana-
lytical work.

Preliminary results obtained for a limited number of healthy
and cancer subjects reveal promising means to separate the two
groups based on urinary analytical profiles processed with mod-
ern cheminformatics tools. That may open a new pathway to
convenient diagnostics.
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