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bstract

Nowadays, bioinformatics offers advanced tools and procedures of data mining aimed at finding consistent patterns or systematic relationships
etween variables. Numerous metabolites concentrations can readily be determined in a given biological system by high-throughput analytical
ethods. However, such row analytical data comprise noninformative components due to many disturbances normally occurring in analysis of

iological samples. To eliminate those unwanted original analytical data components advanced chemometric data preprocessing methods might
e of help. Here, such methods are applied to electrophoretic nucleoside profiles in urine samples of cancer patients and healthy volunteers.
he electrophoretic nucleoside profiles were obtained under following conditions: 100 mM borate, 72.5 mM phosphate, 160 mM SDS, pH 6.7;
5 kV voltage, 30 ◦C temperature; untreated fused silica capillary 70 cm effective length, 50 �m I.D. Different most advanced preprocessing tools
ere applied for baseline correction, denoising and alignment of electrophoretic data. That approach was compared to standard procedure of
lectrophoretic peak integration. The best results of preprocessing were obtained after application of the so-called correlation optimized warping
COW) to align the data. The principal component analysis (PCA) of preprocessed data provides a clearly better consistency of the nucleoside
lectrophoretic profiles with health status of subjects than PCA of peak areas of original data (without preprocessing).

2006 Elsevier B.V. All rights reserved.
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. Introduction

Bioinformatics is the application of computer sciences and
athematics to the management and analysis of biological

atasets to aid the solution of biological problems [1,2]. Nowa-

ays, in the post-genomic era, large databases containing
etabonomic, proteomic and transcriptomic data are created

nd attention should be focused to their storage, management,
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nalysis as well as extraction and ultimate application of system-
tic information they convey [3]. It has been estimated that the
mount of information in the world doubles every 20 months and
he size and number of “omics” databases are increasing even
aster. Therefore, appropriate characterization and classification
f data processing tools as well as creation of new computational
rocedures (algorithms) is unavoidable [3].

According to the definition of the Metabolomics Soci-
ty (http://www.metabolomicssociety.org), metabolomics is the
tudy of metabolic changes that encompasses metabolite tar-

et analysis, metabolite profiling, metabolic fingerprinting,
etabolic profiling and metabonomics. Metabonomics can be

nderstood as comprehensive analysis of endogenous metabo-
ites changes in biological fluids and tissues that result from

mailto:roman.kaliszan@amg.gda.pl
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4 ical a

d
p
e
t
m
l
p
d
t
o
o
a
u
b
c
i
a
a
o
m
b
s
d

s
s
v
i
c
a
p

b
h
o
b

s
t
R
e
o

i
t
d
(
(
b
m
i
p
o
i
s
a
a

a
I
A
n
o
g
t
m
p
t
c
(
m
p
c
a
t
b
f
c

i
T
t
p
t
o
b
h
d
m
c
n
i
e
c
a
l
a
a

2

2

p
G
s
c
included in the study were after diagnosed kidney, prostate
14 E. Szymańska et al. / Journal of Pharmaceut

isease or therapeutic treatment. Since metabolites are the final
roducts of cellular regulatory processes, their quantitative lev-
ls can be regarded as the ultimate response of biological systems
o genetic and environmental changes [4]. Data obtained from

etabolome analysis can be used for various aims, like simu-
ation of the biological activity with genes coded in genome,
roduction of valuable metabolites by gene technology [5] and
iagnosis of various pathological states [6–9]. A specific fea-
ure of metabolomics is its reductive nature. Currently it focuses
n ca. 2400 compounds, compared to 25,000 genes and about
ne million proteins and peptides to be considered in genomic
nd proteomic studies, respectively [10,11]. Of course, partic-
lar metabolite is usually involved in several pathways. It can
e rationally assumed that metabolite profile patterns might be
haracteristic for specific diseases, however. Nowadays, one can
magine determination of all the metabolites by high-throughput
utomatized and roboticized analytical techniques, followed by
fast and reliable pattern recognition by generic model fitting
r classification algorithms. That should result in predictive data
ining. However, such a diagnostics “philosopher stone” would

e impractical, if at all possible. Instead, considering of limited
ets of metabolites appears advisable in a more or less specific
isease diagnostics.

The approach needs not to rely on any reasoning or under-
tanding the mechanisms of the processes. However, it must be
hown to provide correct predictions or classification in cross-
alidation samples. For that aim proper preprocessing of analyt-
cal data seems to be of utmost importance to provide eventually
onsistent patterns or systemic relationships between variables
nd then to validate the conclusions by applying the identified
atterns to new subsets of data.

In case of heterogeneous diseases, like cancer, a panel of
iomarkers (metabolites) determined through the use of multiple
igh throughput platforms, might provide reliable information
n health status of the patients, which is normally not provided
y a single variable (biomarker) [6,9].

To be useful, biomarkers not only must distinguish between
ubjects with a given diseases and those without it, but also
heir assay methods should be validated and readily employed.
esearches from different laboratories should use the same
xperimental protocol and compare their profiles against those
f others in universal database.

The optimal practice in analysis of biological samples should
nclude selection of appropriate analytical methods and collec-
ion of analytical data, followed by application of multivariate
ata processing models, such as principal component analysis
PCA), partial least squares (PLS) or parallel factor analysis
PARAFAC) for explanatory purposes. All these steps should
e robust and fast enough to deal with many disturbances nor-
ally occurring in analysis of various biological samples. That

s essential in metabonomic studies, where database may com-
rise hundreds or thousands of variables. Usually, variations
bserved in metabonomic measurements are due to complex-

ty and diversity of analyzed biofluid samples (matrix effects:
ample-to-sample), mechanical drift (fluctuations: run-to-run)
s well as imperfections of analytical methods in the long-term
nd large-scale analysis projects.

a
i
o
w

nd Biomedical Analysis 43 (2007) 413–420

Capillary electrophoresis (CE) is one of the most important
nalytical methods in modern life sciences laboratories [12–15].
t is employed widely in search for cancer biomarkers [16,17].
dvantages of CE, that make it particularly valuable in metabo-
omic studies are: high resolution power, relatively short time
f analysis and small quantities of both the sample and the back-
round solutions needed for assay. However, CE in comparison
o high performance liquid chromatography (HPLC) or gas chro-

atography (GC), produces less reproducible results, what may
ose a problem in long lasting projects. Variations in migra-
ion time – a function of electroosmotic flow (EOF) inside the
apillary, sample loading, wall interactions and physical errors
such as injection irreproducibility or temperature variations) –
ay lead to poorly reproducible data and preclude their appro-

riate interpretation [14,15]. To overcome this problem specific
hemometric approaches may be of value for migration time
djustments and peak alignment. After a proper chemometric
ransformation, the data originating from various sources could
e compared and relevant information might be extracted and
urther investigated by specific advanced explanatory/inductive
heminformatics.

In this study, different chemometric methods were compared
n preprocessing of CE data obtained in metabonomic studies.
he data were from CE analysis of nucleoside profiles – poten-

ial biomarkers of cancer [18–20] – in urine samples from cancer
atients and healthy controls. The applicability of different pre-
reatment tools, as well as impact of preprocessing on evaluation
f internal relationships of the data, was investigated. Various
aseline correction, denoising and peak matching algorithms
ave been used. PCA of an original dataset and a derivative
ataset, obtained after implementation of individual pretreat-
ent methods, evidences the advantage of the proposed prepro-

essing of electrophoretic data for conclusiveness of metabo-
omic studies. The study has a pilot methodological character as
t has been done on a relatively small group of 28 subjects. How-
ver, preliminary results indicate evident trends in clustering of
ancer patients separately from healthy volunteers thus encour-
ging extension of both the number of subjects and the metabo-
ites assayed. Chemometric preprocessing of the employed
nalytical data to reduce noninformative components appears
dvisable.

. Materials and methods

.1. Analytical procedures

Spontaneous urine samples from healthy adults and cancer
atients from the Department of Urology, Medical University of
dańsk, Gdańsk, Poland were collected after their informed con-

ents and the studies were performed in accordance to the prin-
iples embodied in the Declaration of Helsinki. Cancer patients
nd bladder cancer. After collection, urine samples were frozen
mmediately and stored at −24 ◦C. Directly before the analysis
f nucleoside profiles and creatinine concentration the samples
ere thawed at room temperature.
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Fig. 1. Six example electrophoretic profiles from the obtained dataset before pre-
processing. Peaks: 1, pseudouridine; 2, uridine; 3, cytidine; 4, 5-methyluridine;
5, inosine; 6, N4-acetylcytidine; 7, guanosine; 8, adenosine; 9, N2,N2-
dimethylguanosine; 10, xanthosine; (*), unidentified peaks. The electrophero-
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Urinary nucleosides were analyzed with application of the
ollowing stages: sample pretreatment, solid phase extraction
SPE) and capillary electrophoretic (CE) separation and quan-
ification. Additionally, during a separate electrophoretic exper-
ment [21] the concentration of creatinine for every sample was
etermined. Analytical methods were previously developed and
alidated in the Department of Biopharmaceutics and Pharma-
odynamics, Medical University of Gdańsk, Gdańsk, Poland.1

CE experiments were carried out on a Beckman Coulter
DQ P/ACE 5510 system (Beckman Instruments, Fullerton,
A, USA), fitted with a diode array UV-absorbance detec-

ion (190–600 nm), a temperature-controlled capillary compart-
ent (liquid cooled) and a temperature controlled autosam-

ler (air cooled). Electrophoretic data were acquired (acqui-
ition rate of signals was 4 Hz) and analyzed by 32 Karat
oftware (Beckman). The electrophoretic dataset was obtained
21] by application of following conditions: 100 mM borate,
2.5 mM phosphate, 160 mM SDS, pH 6.7; 25 kV voltage, 30 ◦C
emperature during analysis; injection 5 s × 0.5 psi; capillary:
ntreated fused silica 70 cm length to detector, 50 �m I.D. In
ase of creatinine concentration determination exactly the same
lectrophoretic conditions were used instead of injection time
0 s × 0.5 psi.

.2. Creation of dataset

The electropherograms were imported from 32 Karat Soft-
are into Matlab 6.5 software environment for Windows (Math-
orks, Natick, MA, USA) as three-dimensional matrix (time,

bsorbance, wavelength). The objects of preprocessing – data
oints from 2200 to 4000 (240 data points correspond to 1 min
f analysis) – were selected as sections of electropherograms
ncluding most peaks (of known and unknown identity) and
avelength of 254 nm was chosen as the most representative

Fig. 1). On that basis, dataset matrix with rows corresponding
o each analyzed sample was created. It contains data from 28
E analyses of urine samples: 18 from cancer patients and 10

rom healthy controls.

.3. Chemometric analysis of data

Different preprocessing tools were compared. These included
aseline correction, denoising and alignment of data. In the base-

ine correction method, the selection of minimum points in data
oint window and estimation of new baseline by linear inter-
olation was employed. The proper signal denoising requires
nowledge of the nature of the noise occurring in the data and

1 M.J. Markuszewski, E. Szymanska, K. Bodzioch, R. Kaliszan, M.
arkuszewski, K. Krajka, Metabonomic analysis of nucleosides and modified

ucleosides in urine of healthy and cancer patients, in: 16th International Sym-
osium on Pharmaceutical and Bioanalytical Analysis, Baltimore, MA, USA,
005, p. 57 (abstract book); E. Szymanska, M.J. Markuszewski, K. Bodzioch,
. Kaliszan, M. Markuszewski, K. Krajka, Combined use of separation data
nd bioinformatics in metabolic analysis of urological clinical patterns, in: 11th
nternational Symposium on Separation Sciences, Pardubice, Czech Republic,
005, pp. 62–63 (abstract book).
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ram was obtained under following conditions: 100 mM borate, 72.5 mM phos-
hate, 160 mM SDS, pH 6.7; 25 kV voltage, 30 ◦C temperature during analysis;
apillary: untreated fused silica 70 cm length to detector, 50 �m I.D.

haracteristics of the peaks in the time and frequency domains.
o limit the noise, the efficient digital signal processing algo-
ithms, such as the Savitzky–Golay (SG) implementation of
olynomial least-squares filters, the Cooley–Tukey algorithm
or the fast Fourier transform (FFT), derivative filters or discrete
avelet transform [22,23] were applied.
At the stage of alignment the research concentrated on the

evelopment of two different methods: dynamic time warping
DTW) and correlation optimized warping (COW), as these are
he most common techniques used in preprocessing of chro-

atographic data [24–28]. In selection of appropriate alignment
lgorithm three principles were considered according to Johnson
t al. [29]:

1) The algorithm must preserve the chemical selectivity differ-
ences between different profiles and limit run-to-run reten-
tion/migration time shift.

2) The algorithm must be fast and less memory-demanding to
deal with large number of data sets in a short period of time.

3) The resulting precision of retention/migration time estima-
tion should be significantly improved in comparison with
that initially provided by the instrumentation.

After selection and application of the best set of prepro-
essing methods the principal component analysis was per-
ormed and the results compared with those of PCA of the
riginal data (before preprocessing). All the calculations at
he preprocessing of data and chemometric evaluation of the
btained results were done in Matlab 6.5. Algorithms of the

OW, denoising by Savitzky–Golay implementation of poly-
omial least-squares filters and the Cooley–Tukey algorithm
or the fast Fourier transform were from the Department of
nalytical Chemistry and Pharmaceutical Technology, Vrije
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niversity, Brussels, Belgium. Algorithm of baseline correction
as from the Department of Biopharmaceutics and Pharma-

odynamics, Medical University of Gdańsk, Gdańsk, Poland.
outines for DTW and discrete wavelet transform were as

reely available at the websites: http://www.models.kvl.dk and
ttp://www.jstatsoft.org/v06/i06/codes/ThreshWaveb.m.

. Results and discussion

The main goal of pretreatment of first-order data is to
educe the time and cost of processing of complex chemical
ata, increase data quality and, most important, increase
bjectivity of the information extracted from them. The choice
f preprocessing methods is highly dependent on the type of
ata. In present research, electrophoretic data were considered.
hese data exhibit specific features, such as sharp signals and
iscontinuities within a wide range of both time and frequency
omains. That makes them a special object of preprocessing
ethods. Many chemometric tools usually applied in process-

ng of chromatographic data do not necessarily work properly
ith electrophoretic data. At the current state of the art, the
nowledge on successful application of bioinformatic tools in
reprocessing of electrophoretic data is highly limited.

The experimental dataset, obtained as described in Section 2
nderwent the following processes: baseline correction, denois-
ng, selection of target sample, optimization of COW/DTW
arameters, alignment of the whole data set, normalization of
btained results by known creatinine concentrations and, finally,
CA analysis.

.1. Baseline correction and denoising of data

At first step various baseline correction and denoising
lgorithms were applied. Baseline correction provides flatter
aselines and averages the baseline to zero. This improves
he accuracy of integrals, the appearance of the signal and the
uality of a result when subtracting one electropherogram from
nother. In our case, baseline correction was obtained by simply

nding the minimum points in data points window (in this study
00 data points) for all possible window placements, consider-
ng them as new baseline and linear interpolation of other points
24].

i
d
c
w

able 1
he main differences between dynamic time warping (DTW) and correlation optimiz

ethod Dynamic time warping (DTW)

ay of alignment Sequence of elementary transitions
from one end point to other

imilarity criterion Squared Euclidean distance betwee
profile and aligned profile

econstruction of profiles Linear interpolation or averaging

arameters to define Local continuity constraints;
band-constraints

† Number of points in each segment of aligned sample.
‡ Slack parameter: maximum length increase or decrease in this segment.
nd Biomedical Analysis 43 (2007) 413–420

Denoising separates the desired part of signal (correlated with
he properties of analyzed sample) from unwanted part of sig-
al (noise), what makes the further processing steps, such as
arping, more effective. Three different algorithms, normally
sed in processing of chromatographic data, were implemented:
G smoothing, FFT of Cooley–Tukey algorithm and discrete
avelet transform [22,23].
The employment of the two first methods was unsuccess-

ul because, besides limitation of noise, also shapes of elec-
rophoretic peaks were changed. This fact could be related to
naccuracy of sine and cosine basis and low-order polynomial
unctions to process electrophoretic data functions used by fast
ourier transform and Savitzky–Golay smoothing, respectively.

Then, discrete wavelet transform methods, which are recom-
ended for pretreatment of electrophoretic data by Perrin et

l. [23], were implemented. Soft thresholding with sigma value
(standard deviation of additive Gaussian White Noise [23])

ccurred to be accurate in our case. However, limitation of noise
y the developed method appeared to have negligible impact on
roper quantification of data and presentation of data in PCA
the percent of explained variance by three first principal com-
onents and location of points were very similar). Therefore,
enoising step could be omitted in this case.

.2. Alignment of data

The aim of various alignment (warping) methods is to cor-
ect or eliminate the shift in discrete data signals in such a way
hat the output data could be directly used by other appropri-
te chemometric tools for visualization and data mining. There
re several methods applied in signal aligning which base on
ifferent similarity criterions and disparate ways of creation of
ligned signals [22–34].

DTW and COW, which are used in our studies, are alignment
ethods that seem to work for broad ranges of signals [24–26].
OW is a special case of DTW and the main differences between

hese two methods are presented in Table 1.
Dynamic time warping nonlinearly warps the two trajectories
n such a way that similar events are aligned and minimum
istance between them is obtained [25,26]. In DTW several
onstraints should be specified to avoid excessive corrections,
hich could occur in the simplest implementations. Types and

ed warping (COW) [24,25]

Correlation optimized warping (COW)

going Piecewise linear stretching and compression

n target Correlation coefficient between
corresponding part in target profile and
aligned profile

Linear interpolation

N†, t‡

http://www.models.kvl.dk/
http://www.jstatsoft.org/v06/i06/codes/ThreshWaveb.m
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alues of selected constraints and synchronization steps prede-
ermine the results of warping and its quality. Local continuity
onstraints (called “rules”) define the corrective function of the
hole algorithm and are collected in the lookup table (T(n,m)).

n the lookup table T(n,m) n is the largest block distance covered
y any of the rules in the table and m is the maximum number
f horizontal/vertical consecutive transitions allowed by the
able [26]. The second type of constraints (band-constraints)
s responsible for maximum compression/expansion in time
oints of the sample and reference to their original lengths. In
ynchronization step, all the points in optimal path can be used
o obtain the warped signal (symmetric synchronization) or
ome points can be aligned with the same point of the reference
ignal (asymmetric synchronization).

In comparison to other preprocessing methods, COW is
nown as less flexible and more “peak shape preserving” and
asy to employ by simple optimization of the parameters settings
only two parameters have to be set) [24–26]. In this method also
ynamic programming is used but solution space of optimiza-
ion is restricted to only two parameters: the number of points in
ach segment of the aligned sample N and the maximum length
ncrease or decrease in this segment t-slack parameter. After
racking back the optimal path and setting all borders of seg-

ents in right positions, the warped/aligned sample segments
re reconstructed by linear interpolation and they are the best-
atching signals for the predefined set of parameters N and t.
After selection of denoising and baseline correction tools,

rofile #4 (see Table 2) was selected as the target of alignment
s the most representative one (it contains all peaks present in
ther samples and its peaks are situated near the center of the
istributions of the corresponding peaks from other profiles).

he main object of alignment, the shift, was characterized in
able 2. It could be seen that maximal peak shift was about 200
ata points for that dataset, with mean value of 48 data points
or one of the last peaks in the aligned section. That strictly cor-

t
p
t
s

able 2
haracterization of shift in dataset

eaks† Target profile Unaligned profiles

Migration
time (min)

Number of
data points

Shift range
(data points)‡

10.07 2416 −46 to +83
10.53 2528 −63 to +41
10.65 2557 −93 to +34
11.37 2728 −107 to +37
11.74 2817 −41 to +115
11.92 2861 −119 to +47
12.28 2948 −130 to +50
12.40 2976 −130 to +50
12.85 3083 −141 to +65
14.86 3767 −191 to +59
14.95 3590 −92 to +198

0 15.55 3732 −200 to +76

he shift was compared for 12 electrophoretic peaks (10 identified and 2 unidentified
ime according to target profile (profile #4) before and after alignment.
† Peak numbers: 1, pseudouridine; 2, uridine; 3, cytidine; 4, 5-methyluridine
imethylguanosine, 10, xanthosine; (*), unidentified peaks.
‡ The negative sign (−) refers to a forward shift and a positive sign (+) refers to a b
nd Biomedical Analysis 43 (2007) 413–420 417

esponds to 1.78% relative standard deviation of migration time
nd means an acceptable reproducibility in analysis of biologi-
al samples. However, such a shift is approximately three times
igher than that reported for chromatographic data, which were
rocessed by various warping techniques [23–34]. Its reduction
ay be treated as a chemometric challenge.
The DTW and COW algorithms with various parameters were

mplemented and the results are presented in Fig. 2. The best
esults of COW were obtained with application of N = 160, as
umber of sections, and t = 4, as slack parameter (Fig. 2D). The
ength of section was then set equal to 12 points and time for cal-
ulation for each electrophoretic profile was approximately 50 s.
he quality of this alignment was high for most of the profiles,

esulting in correlation coefficients above 0.9. Only in few cases,
here was the need to use other sets of parameters (actually, the
ariation between the target profile and the profile to be aligned
as higher than 50 data points for four profiles). The division
f profile in 12 points pieces and alignment of every piece by
tretching and compression could cause marked deformation of
ata such as deformation of peaks shape and area under peaks.
owever, in our dataset, where peaks are narrower than standard
eaks in chromatograms (10–20 data points’ width), no strong
eformation of that type was observed.

In the development of DTW method more attention was paid
o the application of two types of that algorithm: dynamic time
arping with slope constraints and dynamic time warping with
OW-like constraints. Limitation of flexibility of dynamic time
arping was essential because unconstrained DTW produced

rtifacts and altered the shape of peaks present in this data.
ynamic time warping gave comparable results to those of COW
nly when rigid constraints were used. Warping with lookup

(20,4)
able T (i.e., with rules spanning also 12 data points and 4
oints as maximal number of consecutive horizontal or vertical
ransitions in the warping path) was applied with 10% band con-
traints. In the synchronization step, interpolation or averaging

Aligned profiles

Mean shift
(data points)

R.S.D. (%) Shift range
(data points)‡

R.S.D. (%)

±15 1.05 −2 to +1 0.029
±19 1.00 −5 to +6 0.086
±21 0.57 −3 to +1 0.032
±23 1.12 −3 to +2 0.031
±17 1.18 −2 to +1 0.02
±25 1.20 −3 to +6 0.028
±27 1.24 −1 to +1 0.021
±28 1.26 −2 to +2 0.024
±30 1.39 −3 to +7 0.069
±41 1.49 −1 to +3 0.023
±35 1.60 −4 to +4 0.024
±48 1.78 −3 to +3 0.033

) by calculation of variation in number of data points and variation in migration

; 5, inosine; 6, N4-acetylcytidine; 7, guanosine; 8, adenosine; 9, N2,N2-

ackward shift as compared to profile #4 (target profile).
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ig. 2. Six example electrophoretic profiles after warping with different DTW
veraging (B), defining endpoints (C); D, after COW warping N = 160, t = 4. Ele

as employed (Fig. 2A and B). Additionally, further restrictions
o dynamic time warping constraints, by defining end points of
ules in DTW, were applied and the algorithm analogous to COW
ith only difference in optimization criterion was formulated

Fig. 2C).
Consequently to applied DTW parameters, reconstructions

f aligned profiles were different. Averaging in synchronization
tep caused disturbances in peak height. That means that when
he sample peak is larger than the matching in target profile,
he former is cut. Conversely, when the sample peak is smaller,
ts top element is repeated until two sides of the synchronized
eak match those on reference, resulting in plateau (Fig. 2B). No
uch artifacts could be noticed after employment of interpolation
nstead of averaging (Fig. 2A and C). The results of the presented
TW warping are quite similar to those obtained by COW with

mall changes in peak height (Fig. 2B) and width (especially
idth of the second peak at closer view of aligned data at Fig. 2A

nd B). Effects of DTW warping with defined endpoints and
nterpolation as synchronization are identical to that obtained
y COW, in spite of different optimization criteria (Euclidean
istance in DTW and correlation coefficient in COW).

Calculation time for all the applied alignment methods was
ifferent. It was, accordingly, 105, 110 and 97 s per one profile
or cases A–C. That is about two times more than time of the cor-
esponding correlation optimized warping. On that basis, COW

ith N = 160 and t = 4 was selected for further preprocessing of
ataset.

Now, the obtained derivative of data was normalized by cre-
tinine concentration which has been known for each sample,

p
t
o
o

COW algorithms. A–C, after DMW warping T(20,4) with interpolation (A),
horetic conditions as in Fig. 1.

ecause concentrations of all the considered analytes are in lin-
ar relationship with the concentration of urine expressed by the
alue of extracted creatinine [18].

.3. Principial component analysis

Finally, PCA on transformed and normalized by creatinine
oncentration nucleoside profiles was performed to reveal the
tructure of data and evaluate the differences between two groups
f profiles: healthy controls and cancer patients. Additionally,
CA analysis of peak areas obtained by standard integration of
7 peaks (14 peaks presented in Fig. 1 and 3 different peaks
resent in the part of electropherograms cut before preprocess-
ng) from original electropherograms was performed for the sake
f comparison. The principal components are displayed as a set
f scores, which highlights the clustering and outliers. PCA scat-
erplots (PC1 versus PC2 and PC1 versus PC3) are presented
n Fig. 3. Large values (>80%) of explained variance in the
rst three principal components proves the usefulness of PCA

n mining the information contained in electrophoretic profiles.
he division between the groups of healthy and cancer patients
an be clearly noticed on the scatter plots obtained after pre-
rocessing of electrophoretic data (Fig. 3 A and B) although it
s also seen after standard integration and calculation of peaks
rea before the alignment (Fig. 3C and D). PCA analysis of

reprocessed data (Fig. 3 A and B) is evidently more informa-
ive (the percent of explained variance is higher and structure
f data is more clear in that case), even though it is performed
n shorter electrophoretic profiles and comprises not all the data
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ig. 3. PCA scores scatter plots ((�) cancer patients; (�) healthy patients). Pri
nd aligned) by direct PCA evaluation (PC1 vs. PC2 – Fig. 3A; PC1 vs. PC3
utoscaling and PCA of area of 17 peaks (identified and unidentified peaks from

ollected during the capillary electrophoretic analysis. After data
reprocessing (Fig. 3A and B) the data discrimination signifi-
antly increased and first principal component, PC1, accounted
or 86.6% of data variance, the second principal component,
C2, for 3.0% of data variance, and the third principal compo-
ent, PC3, for 2.2%. In case of PC analysis performed on original
lectrophoretic data before preprocessing (Fig. 3C and D) the
ata discrimination expressed by PC1, PC2 and PC3 accounts
or 62.1, 11.6 and 9.2% of data variance, respectively.

That it is an encouraging preliminary finding from the point
f view of explanatory potential of metabonomic studies. It
ppears that application of preprocessing tools not only helps
o limit the capillary electrophoretic method disturbances but
lso to reveal some information present in electrophoretic
ata, uncovered by standard peak integration. This information

ight be connected with small peaks and peak’s shapes not

dequately taken into consideration in the procedure involving
eak integration and area calculation. Furthermore, application
f proper chemometric tools seems to help to reduce uncertainty

o
a
t
p

l component analysis was performed on preprocessed data (baseline corrected
. 3B) and on original data (before the alignment) by integration, calculation,
1A) (PC1 vs. PC2 – Fig. 3C; PC1 vs. PC3 – Fig. 3D).

nd subjectivity introduced by peak quantification and makes
ossible simultaneous analysis of complex mixtures by such
ools like PCA. Preprocessing of data could be a valuable alter-
ative to peak integration in multivariate data analysis applied in
etabonomic studies. It could limit shortages of the developed
ethods and influence of the factors connected with analyzed

amples and the equipment used. Thereby, it should help to
alidate potential markers by a reliable and fast comparison of
umerous profiles obtained in the large-scale long-term projects.

. Conclusions

In the study different preprocessing methods were imple-
ented to evaluate electrophoretic data profiles of urinary

ucleosides. The electrophoretic data were collected by analysis

f urine samples from healthy and cancer patients and were
ssumed to contain information about physiological state of
he subjects. The aim of the study was to adapt modern data
reprocessing methods before further bioinformatic analysis
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eak integration and area calculation.

The best results of preprocessing were achieved after appli-
ation of the COW with the aligned data analyzed by PCA.
he PCA of electrophoretic peak areas of original data (with-
ut preprocessing) was also performed to compare the results
ith those obtained for the preprocessed data. The structure of
ata provided by PCA was different for the preprocessed data
nd the original data. Preprocessing not only limited the shift in
ata but also revealed information hidden in the nucleoside pro-
les which is probably connected with the shape of peaks and
uch structures of profiles that could not be identified when only
reas under peaks were considered. Furthermore, preprocessing
f electropherograms seems to be a more objective and less time
onsuming procedure than peak integration.

Selection of suitable preprocessing methods appears to be a
ery important step in bioanalytical data evaluation. Certainly,
ore experience in application of chemometric tools in metabo-

omics will help not only to explore the systematic information
ispersed over numerous data but it should also enhance the
eliability of the conclusions drawn and limit the necessary ana-
ytical work.

Preliminary results obtained for a limited number of healthy
nd cancer subjects reveal promising means to separate the two
roups based on urinary analytical profiles processed with mod-
rn cheminformatics tools. That may open a new pathway to
onvenient diagnostics.
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aukowych, Warsaw, Poland (grant KBN No. 3PO5F02724).

eferences

[1] N.M. Luscombe, D. Greenbaum, M. Gerstein, Methods. Inform. Med. 40
(2001) 346–358.

[2] P.A. Whittaker, Trends Pharm. Sci. 24 (2003) 434–439.
[3] R. Goodacre, S. Vaidyanathan, W.B. Dunn, G.G. Harrigan, D.B. Kell,
Trends Biotechnol. 22 (2005) 245–252.
[4] S. Terabe, M.J. Markuszewski, N. Inoue, K. Otsuka, T. Nishioka, Pure

Appl. Chem. 73 (2001) 1563–1572.
[5] M.J. Markuszewski, K. Otsuka, S. Terabe, K. Matsuda, T. Nishioka, J.

Chromatogr. A 1010 (2003) 113–121.

[

[

[

nd Biomedical Analysis 43 (2007) 413–420

[6] J. van der Greef, P. Strobant, R. van der Heijden, Curr. Opin. Chem. Biol.
8 (2004) 559–565.

[7] J.K. Nicholson, J.C. Lindon, E. Holmes, Xenobiotica 29 (1999) 1181–1189.
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